Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.

Identifieur interne : 000734 ( Main/Exploration ); précédent : 000733; suivant : 000735

Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.

Auteurs : Bruce Morgan [Allemagne] ; Daria Ezeri A ; Theresa N E. Amoako ; Jan Riemer ; Matthias Seedorf ; Tobias P. Dick

Source :

RBID : pubmed:23242256

Descripteurs français

English descriptors

Abstract

Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment-specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.

DOI: 10.1038/nchembio.1142
PubMed: 23242256


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.</title>
<author>
<name sortKey="Morgan, Bruce" sort="Morgan, Bruce" uniqKey="Morgan B" first="Bruce" last="Morgan">Bruce Morgan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ezeri A, Daria" sort="Ezeri A, Daria" uniqKey="Ezeri A D" first="Daria" last="Ezeri A">Daria Ezeri A</name>
</author>
<author>
<name sortKey="Amoako, Theresa N E" sort="Amoako, Theresa N E" uniqKey="Amoako T" first="Theresa N E" last="Amoako">Theresa N E. Amoako</name>
</author>
<author>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
</author>
<author>
<name sortKey="Seedorf, Matthias" sort="Seedorf, Matthias" uniqKey="Seedorf M" first="Matthias" last="Seedorf">Matthias Seedorf</name>
</author>
<author>
<name sortKey="Dick, Tobias P" sort="Dick, Tobias P" uniqKey="Dick T" first="Tobias P" last="Dick">Tobias P. Dick</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23242256</idno>
<idno type="pmid">23242256</idno>
<idno type="doi">10.1038/nchembio.1142</idno>
<idno type="wicri:Area/Main/Corpus">000781</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000781</idno>
<idno type="wicri:Area/Main/Curation">000781</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000781</idno>
<idno type="wicri:Area/Main/Exploration">000781</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.</title>
<author>
<name sortKey="Morgan, Bruce" sort="Morgan, Bruce" uniqKey="Morgan B" first="Bruce" last="Morgan">Bruce Morgan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ezeri A, Daria" sort="Ezeri A, Daria" uniqKey="Ezeri A D" first="Daria" last="Ezeri A">Daria Ezeri A</name>
</author>
<author>
<name sortKey="Amoako, Theresa N E" sort="Amoako, Theresa N E" uniqKey="Amoako T" first="Theresa N E" last="Amoako">Theresa N E. Amoako</name>
</author>
<author>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
</author>
<author>
<name sortKey="Seedorf, Matthias" sort="Seedorf, Matthias" uniqKey="Seedorf M" first="Matthias" last="Seedorf">Matthias Seedorf</name>
</author>
<author>
<name sortKey="Dick, Tobias P" sort="Dick, Tobias P" uniqKey="Dick T" first="Tobias P" last="Dick">Tobias P. Dick</name>
</author>
</analytic>
<series>
<title level="j">Nature chemical biology</title>
<idno type="eISSN">1552-4469</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP-Binding Cassette Transporters (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (chemistry)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Chemical (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Vacuoles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cytosol (métabolisme)</term>
<term>Disulfure de glutathion (composition chimique)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transporteurs ABC (métabolisme)</term>
<term>Vacuoles (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione Disulfide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfure de glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Thiorédoxines</term>
<term>Transporteurs ABC</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Models, Chemical</term>
<term>Oxidation-Reduction</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Homéostasie</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Modèles chimiques</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment-specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23242256</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1552-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Nature chemical biology</Title>
<ISOAbbreviation>Nat Chem Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.</ArticleTitle>
<Pagination>
<MedlinePgn>119-25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nchembio.1142</ELocationID>
<Abstract>
<AbstractText>Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment-specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Morgan</LastName>
<ForeName>Bruce</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ezeriņa</LastName>
<ForeName>Daria</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Amoako</LastName>
<ForeName>Theresa N E</ForeName>
<Initials>TN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riemer</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seedorf</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dick</LastName>
<ForeName>Tobias P</ForeName>
<Initials>TP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Chem Biol</MedlineTA>
<NlmUniqueID>101231976</NlmUniqueID>
<ISSNLinking>1552-4450</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018528">ATP-Binding Cassette Transporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C527885">Grx2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516110">TRX2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C089179">YCF1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Chem Biol. 2013 Feb;9(2):69-70</RefSource>
<PMID Version="1">23334544</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23242256</ArticleId>
<ArticleId IdType="pii">nchembio.1142</ArticleId>
<ArticleId IdType="doi">10.1038/nchembio.1142</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 May 21;279(21):22284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jul 1;123(Pt 13):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2000 Dec;62(6):649-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Nov;278(21):4112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Nov 15;47(10):1329-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Mar 23;586(6):847-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22449970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Dec 7;14(6):819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22100409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Nov;7(11):1805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 26;291(5504):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 May;29(6):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 19;47(33):8678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Aug 2;295(5):1046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>News Physiol Sci. 2003 Oct;18:201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Aug;188(4):859-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Apr 14;156(1):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2001 Jan;76(2):627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):621-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Apr;97(2):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16539673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 1996 Sep 16;373(2):157-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8889919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2009 Dec;73(4):577-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19946134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Aug;1794(8):1218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1971 Sep 25;246(18):5570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4398524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):3159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Feb 26;285(9):6118-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19951944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(5):973-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):4959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21051543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Aug 15;382(Pt 1):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15142037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2007 May;7(3):391-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):16582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20332504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 May 18;30(10):2044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Amoako, Theresa N E" sort="Amoako, Theresa N E" uniqKey="Amoako T" first="Theresa N E" last="Amoako">Theresa N E. Amoako</name>
<name sortKey="Dick, Tobias P" sort="Dick, Tobias P" uniqKey="Dick T" first="Tobias P" last="Dick">Tobias P. Dick</name>
<name sortKey="Ezeri A, Daria" sort="Ezeri A, Daria" uniqKey="Ezeri A D" first="Daria" last="Ezeri A">Daria Ezeri A</name>
<name sortKey="Riemer, Jan" sort="Riemer, Jan" uniqKey="Riemer J" first="Jan" last="Riemer">Jan Riemer</name>
<name sortKey="Seedorf, Matthias" sort="Seedorf, Matthias" uniqKey="Seedorf M" first="Matthias" last="Seedorf">Matthias Seedorf</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Morgan, Bruce" sort="Morgan, Bruce" uniqKey="Morgan B" first="Bruce" last="Morgan">Bruce Morgan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000734 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000734 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23242256
   |texte=   Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23242256" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020